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1 Materials and Methods

1.1 Numerical Methods
1.1.1 Binary Networks

The results in Fig. 2 in the main text were obtained by nuna¢sanulation of binary networks with
identical architecture to that studied analytically (seeti®n 2.1), evolving according to the following
update rule (see, e.g1)j: on each time stegt, a neuron; out of the3N that compose the network
was chosen at random. If this neuron belonged to the extpomallation (X), a random number was
generated and its activity;* was set to one it < m;* and to zero otherwise. In all our simulations,
all external neurons had the same mean rate,mé.,: myx for all 4. If the neuroni to be updated
belonged to the recurrent network, its afferent synapticetit was calculated using the instantaneous
activity of all other cells in the network which projecteditolf the synaptic current was larger than the
firing threshold, its activityy$* was set to one, and otherwise it was set to zero. Using thisegduoe,
each neuron is updated evedy iterations on average, which is defined to be equal to theonalr
time constant-. Thus, the resolution of the dynamics increases with theorétsize, i.e.dt = 7/3N.
Since neurons from all three populations update their stathis rate, the time constants of the three
populations is the same, i.e.y = 77 = 7x = 7. The biological interpretation of is as the effective
time constant with which a neuron changes its firing actiiigr concreteness, we assigned it a value of
7 = 10 ms throughout this work. In Fig. S4 the time constantsxoitatory and inhibitory neurons were
different. This was implemented by choosing neurons foratgydrom each population with different
probabilities. The firing activity (and synaptic currents)the network was recorded with a sampling
rate SR. The sampling rate was set £ = 1/7 when calculating instantaneous correlations and to
SR = 16/ when calculating lagged correlations. In stationary cow$ (Figs. 2 and S4), firing
correlations- were calculated as the correlation coefficient of the cpording strings of’s and1’s for
the given neuronal pair (delayed in the case of lagged ativek). For the case of time-varying external
inputs (Fig. S5), the correlation coefficient was calcuddtetween the same strings@$ and1’s from
which the instantaneous time-varying average activityhefdells across trials had been subtracted.
Each dot (curve) in Fig. 2C (2F) is the average over 50 (10ukitions (length 200,000) with
different realizations of the connectivity matrix. The @areters we used in all simulations wepgg =
p =02 mx =010 =1, jgg = 5/VN, jer = —10/V/'N, jiz = 5/V/'N, jir = —9/VN,
jix = 4/V'N, jex = 5/v/N. The synaptic parameters were chosen so that (apart fromctiig
factors) the effective size of a synaptic ingyt,s would be the same as those used2h (Networks
were simulated on two clusters of 28 nodes (http://www.ramligers.edu/ravana.php) and 19 nodes
running Linux, using custom written codes in C, C++.

1.1.2 Integrate-and-fire networks

Figure 1 of main textWe used a simple feed-forward network of current-basedylagkgrate-and-fire
neurons 8, 4) to generate the data in this figure. The subthreshold memalpatential of each post-
synaptic neuron evolved according to
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wherer,,, = 10 ms. WherV/ (t) reaches a firing thresholtl= 20 mV the cell fires a spike and it is
reset tol0 mV during an absolute refractory period of 2 ms. The synagitiengths/,, (o« = E,I) are
constants chosen to obtain EPSPs (IPSPs) of peak-amplitd8g-0.75) mV. PSCs were modeled as a
kick followed by an exponential decay,

ds§
dt
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where the PSC decay timg = 5 ms,d(. . .) is the Dirac delta function ang* are the spike times from
pre-synaptic neurohof populationa = F, I.

In Fig. 1B we simulated a pair of post-synaptic cells recgjvonly excitatory spike trains. Each
cell receivedVg = 250 independent Poisson with a constant rate of 5 spikes/s vgnaduced approxi-
matelly the same output rate. A numhey g of the inputs to each neuron were shared, mamads varied
in the range (0, 0.4).

In Fig. 1C, E-F, we fixed the fraction of shared inputpto= 0.2 and systematically varied the
correlation of the input spike trains,,. Besides simulating the case with only excitatory inputg (t
trace) we also considered a case with both excitatdry & 250) and inhibitory (V; = 220) inputs
(bottom curve) with identical spiking statistics. The imfiting rate was set to 20 spikes/s to produce an
output rate of 5 spikes/s whet}, = 0. Input spike correlations were generated by the commonaudeth
of themothertrain (5,6). We first generated a mother Poisson spike train ofugtg,. Each pre-synaptic
train was a thinned version of the mother train, produceddmglomly and independently keeping the
spikes of the mother train with probability,,. Finally, each spike in the pre-synaptic trains was jitlere
by a random interval drawn from a two-tailed exponentialrthation of zero mean and a time constant of
5 ms. Thus, all pre-synaptic trains were marginally Poisbohhad (approximately) exponential cross-
correlograms of width 10 ms and areg. Output spike correlations,,,; were computed numerically as
described in section 1.3.4. using a count windBw= 50 ms and a simulation length = 10,000 s.

Figure 3 of main text. The results in Fig. 3 were obtained by numerical simulatibrspking
conductance-based integrate-and-fire networksl?) . Except for the sizes of each population, the
architecture of the spiking and binary networks was idehtid he spiking network was composed of
Ng =4000, Ny =1000 andNx =4000 neurons. The membrane potentigl of the i-th neuron { =
1,..., N,) from populationae = F, I evolves according to

ave
Cp—

dt
where C,,, = 0.25 nF is the membrane capacitangg, = 16.7 nS is the leak conductance (resting
membrane time constat,, /gr, = 15 ms),V;, = — 70 mV is the resting potential arfl= — 50 mV is

= —gr(V® = Vi) + IOE(t) + 127 (t) + 12% (t) + I7PP (if V> < 0)




the firing threshold. After a spiké;~ was reset td’z = — 60 mV during an absolute refractory period
of 2 or 1 ms forE and! cells, respectively.
The synaptic currents to this neunZSZ?‘rﬁ (B =E,1,X) are given by
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where V2 is the reversal potential of the corresponding current. @&, = V.X = 0 mV and
VI = —80mV. The variabl@?f is a binary random variable with probability= 0.2 (except in Fig.

S7 D-F) of being equal to one which determines if g€lih populations) projects to celi (in population

«). The variablegf‘jﬁ measures the strength of the synaptic conductance betlesa two cells. All
conductance strengths from cells in populatigrio cells in populationn are drawn from Gaussian
distributions of meary®’ and std. dev.0.5¢*%. We setg®® = 2.4 nS, g1 = 40 nS, ¢'¥ = 4.8,
nSg!'l = 40 nS,¢F¥X = ¢/X = 5.4 nS. The quantit;s?jﬁ(t) represents the instantaneous value of the
synaptic gating variable describing the fraction of opearttels of the synapse from cglto celli. We

model unitary conductance changes in response to a pretsysaike as a difference of exponentials:
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wheret; are the spike times of neurop d%ﬂ is the conduction delay between the two celts, =

1 ms andry; = 5 ms are the rise and decay times of the unitary conductanaegeh(equal for all
synapses in the network, except for Fig. S7 G-I), and thefact= 1 ms ensures that the area under
the unitary conductance is constant regardless of the ndelecay time-constants. Conduction delays
from excitatory (inhibitory) cells were drawn from a unifordistributionds” = [0.5 : 1.5] ms @ =

[0.1 : 0.9] ms) independently for each synapse, sampled at a resobfti@®5 ms (3, 14. Neurons in
the external network had Poisson statistics with a constaatof 2.5 spikes/s (except in Figs. S7 A-C
and S8).

In Fig. 3C-D we simulated an intracellular recording whepastant currents were injected into cell
pairs in which the spiking mechanism had been disabl&d1§. The range of current levels,,, was
adjusted to isolate EPSPs, IPSPs, or different combirmttbEPSPs and IPSPs. The current levels were
Lypp = —1.3,-0.65,—-0.1,0,0.2,0.74, 1.48,2.22,2.96, 3.7 nA. We computed cross-correlograms of the
voltages, and obtained for each condition an average owecdbpairs from ten different networks (50
s of simulated time) except the EPSP-IPSP condition (Figg@@ curve) were the number of pairs was
1000.

Numerical integration of the differential equations in fi@ulations was performed using the second-
order Runge-Kutta algorithm with an iteration time-ste@d@f5 ms, using custom software written in C
and C++.



1.2 Experimental Methods

Detailed descriptions of surgery and recording procedhi@g been published previousl§7-19.
Briefly, nine rats (Sprague-Dawley; 400 - 900 g) were andigie with urethane (1.3 - 1.6 g/kg body
weight) and ketamine (25-40 mg/kg) plus additional inj@as of urethane (0.2 g/kg) as needed. In some
experiments, cortical inactivation was induced by adddicdoses of ketamine (10 mg/kg, i.m.). Body
temperature was retained with a heating pad. Rats weredlaca stereotaxic frame or naso-orbital
restraint, and a window in the scalp was prepared over thetws®nsory or auditory cortex. A sili-
con microelectrode (Neuronexus technologies, Ann Arbor s attached to a micromanipulator and
moved gradually to its desired depth position. Probes stetbiof eight linearly arranged shanks with
200m separation between consecutive shanks (maximal sepavedis 1.4 mm). Each shank had eight
staggered recording sites (20n separation). Extracellular signals were high-pass édtgd Hz) and
amplified (1,000 gain) by using a 64-channel amplifier (Sensg Charlotte, VT), and digitized at 25
kHz (DataMax System; RC Electronics, Santa Barbara, CA)Jokt2z (United Electronic Industries,
Inc., Canton, MA). The location of the recording sites waswated to be layer V by histological recon-
struction of the electrode tracks, electrode depth, antfppatterns17). As we observed no significant
differences between the auditory and somatosensory degse twere pooled together in the analysis
presented in the main text. Data from several of these asimate used in previous studigs/(18. All
experiments were carried out in accordance with protoquisaved by the Rutgers University Animal
Care and Use Committee.

1.3 Analysis Methods
1.3.1 Single-Unit Isolation

Units were isolated by a semiautomatic algorithm (httpuStakwik.sourceforge.net) followed by man-
ual clustering 20) (http://klusters.sourceforge.net). Single units delédor further analysis had less
than 10% contamination in an absolute refractory periodrazand fired more than 75 action potentials
in the recording session. Across the 18 recording sessinfigats that we analyzed, an average of 69
(range [16:116], interquartile range [44:93]) simultangly recorded single units met these conditions.

1.3.2 Classification of cortical state

Under urethane anesthesia, the pattern of cortical backgractivity spontaneously undergoes transi-
tions 21-29 between(i) periods of inactivation (INACT), characterized by globaictuations in net-
work excitability (Up-states and Down-states) similariiode seen in slow-wave sleep, gad periods

of activation (ACT), characterized by tonic activity moriensar to REM sleep or attentive wakeful-
ness 25, 2. Separation into ACT and InACT periods was performed ioi&-lon the basis of the mag-
nitude of the temporal fluctuations in multi-unit activitylJA, defined as the merged spike trains of all
well-isolated units, Fig. S1A). Each recording session dieigled into contiguous non-overlapping 10
s intervals and, for each interval, the coefficient of vasia{CV) of the spike count of the MUA across
200 windows ofl" = 50 ms was calculated (Fig. S1B). Although cortical actmator inactivation are



associated with lower or higher CV values respectively,diséinction between these two states is not
discrete, but rather varies along a continu@w) ( To highlight the difference in the correlation structure
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Fig. S1: Classification of cortical state. (A)Evolution of the multi-unit spike count in an example expeznt
from somatosensory cortex. Gray line is the spike count @eMiJA in windows of " = 50 ms and black dots
indicate the ocurrence of a Down-state (see section 1.@3)Coefficient of variation (CV) of the gray curve in
(A) computed in non-overlaping intervals of 10 s. The pofialfarecorded makes an abrupt transition from an
inactivated state (INACT) to an activated state (ACT) (rad blue bars indicate INACT and ACT periods chosen
for further analysis in this particular experimenfc-D) Example local field potential (LFP) traces (top), rasters
(middle, cells sorted by rate) and MUA firing rates (bottoratmalized by number of neurons) for 10 s intervals
(signaled by the small boxes in (B)) of INACT (C) and ACT (Duiihg the INACT period, the LFP and MUA rate
show large-amplitude, low-frequency fluctuations which alpsent during the ACT period.

of neural populations during cortical activation and inatton, we identified, for each experiment,
ACT and InACT periods as those at the extremes of the addivatiactivation continuum, as assessed
by the value of the CV of the MUA spike count (Fig. S1B red angebhorizontal bars). Although the



characteristic CV values observed during ACT and INACTquisivaried between experiments, all ACT
periods had an average CV of less than 0.5, and there wagiaeligem overlap between the distribution
of CVsin the ACT and InACT periods across all experimentserg\period of ACT or INACT had to
consist of at least nine consecutive 10 s intervals, anéréifit periods of ACT or INACT in a single
experiment were merged. The mean duration of the merged K@) period analyzed per recording
session was 610s (438s). While sensory stimuli were pregentsome experiments, only unstimulated
epochs were used for the current analyses.

1.3.3 Detection of Up-states

Toisolate intervals of sustained activity (Up-states)mtyiperiods of inactivation (INACT), we proceeded
by first identifying intervals of silence (Down-states) ahdn removing them from the spike trair&tep

1.- From the MUA spike train, we computed the instantaneous latipa activity m(t) by convolution
with a Gaussian density of width 10 ms. We set a threshaltl 20% of the maximum of(¢) for the
whole recording session, i.6.= 0.2 maz(m(t)). Step 2.-A Down-state was associated to every inter-
spike interval (IS1) in the MUA spike train longer than 50 misie Down-state began (ended) at the first
point in time left (right) of the center of the ISI where(t) = 6. Step 3.Every interval in between two
Down-states was defined as an Up-state, unless the Up-stateherter than 50 ms, in which case the
two surrounding Down-states were merged togetlstep 4.-Time-intervals classified as Down-states
were removed from all spike spike trains and the correlatioefficientr between the resulting spike
trains, composed only of Up-states, were calculated idalhtias during periods of activation (see next
section). Note that, beyond the requirement of a minimunatitum of 50 ms, we did not impose any
condition of stationarity on Up-states (see, e.qg., fluadmstduring the third Up-state in Fig. 4C).

1.3.4 Quantifying Spiking Correlations

We quantified spiking correlations using generalized eesiof the spike count correlation coefficient,
defined as follows. Time was first divided into bins of site= 1 ms and the spike train from theth
neuron was represented by a binary sequen@e, equal tol if there was a spike ir¢, t + dt), and to
zero otherwise. The spike count in a window of sizés defined as the number of spikes(int + 1),
which can be written as a convolution of the spike train witgaare kernel of lengtfi’. Our measure
of the local activity of celli at timet with resolutionT” was also a convolution of the spike train with a
kernel Kp(t)

ni(t;T) = Kr(t) *si(t) =Y Kp(t' —t)si(t') 1)

but we used normalized kernels (area under the kernel eguale), so the;(¢; 7") have units of firing
rate (spks/s). Since the unitsof(¢; 7') do not affect any normalized measure of correlation, owltes
would have been identical had we used spike counts (un-fizedakernels). We used a square kernel
(equal tol/T in (t,t + T') and to zero otherwise) when analyzing simulated spiking (&igs. 1, 3, S6



and S7) and a Gaussian kernel of standard devidtisrinen analyzingn vivo data (Fig. 4, S9 and S11).
The results did not qualitatively depend on the choice of&kr

The statistical properties of spike trains simulated nicadly are stationary. Thus, when analyzing
simulated data we used the standard expression for thdat@recoefficient;; of the activity of cells
and;

Cov(ni,n;
Tij (T) = ( J) (2)
\/C’ov(ni, n;)Cov(nj,nj)
whereCov(n;, nj) is the covariance between the activity of the two cells
1 L
Cov(ning) = ((mi(t) = vi)(n;(t) = v3)) = 7 3 _(nilt) = vi)(nj(t) = v) ®3)
t=0

and where we have dropped the lafieirom n;(¢; T') for simplicity. In this case, the mean rateof the
i-th cell is defined as the averagergft) over its whole lengttL

vi = (ni(t)) :EZni(t) (4)

Note thatr;;(7") defined in this way, measures the degree to which fluctuatiotise activity of the
two cells (at temporal resolutiof) measuredvith respect taheir temporal average across the whole
duration of the spike trains (equation (4)) are predictifzeach other.

The activity of neurons recorded from a neurophysiologagleriment is non-stationary and can,
in principle, co-vary on a wide range of time-scales. Charigehe excitability of the local circuit or
slow electrode drift can result in coordinated changes fiviacover very long time-scales on the order
of several minutes. As recognized befo28)( spiking correlations calculated using the above method
in these conditions would likely reflect to a large extenthsalow covariations, which we are not the
focus of our study. Covariations of a given time-scale (in case, we are interested in the time-scale
of synaptic interactions, i.e., tens of milliseconds) candwlated by using jitter method29g, 30. The
idea is to replace the mean activity of the neuron across ti@eanrecordingy; in equation (3) by the
instantaneous mean(¢; J) at timet across an ensemble of jittered surrogates of the measuilesl sp
trains. In this case, equation (3) reads

Cov'(ni,ng) = ((nit) — vilt; 1)) (n; (t) — v(t: 7))
L
= LS ) = it )y (0) = w15 ) ©
t=0
and
1 Njitt
vi(t; J) = Ny & n;(t; Jk) (6)



wheren;(t;.J;) is the activity at time resolutiofi’ (or ‘spike count’) of thek!” jittered version of the
recorded spike trais;(t) at timet and N, is the number of jittered surrogates. We jittered spikengai
by adding to each spike time an independent Gaussian randoaible of zero mean and std. de\.
Jittering the spike trains independently by an amafirdnly destroys correlations on time-scales
< J. Thus, since slow covariations (of a time-scgle J) are present both in the actual data and in
the jittered surrogates, non-zero values of equation ({5 foair of spike trains denote the presence of
correlations in their spike traingnly at time scales< J. Since we are interested at correlations of
time-scaleT’, in all our analyses we fixed = 47'. In Fig. 4 of the main text]’ = 50 ms and in Fig.
S9,7T was varied from 10 to 500 ms. We obtained a normalized cdiwalécorrelation coefficient), by
generalizing equation (2)
Cov'(n;,nj)

T (T) =
’ \/C’OU’(ni,ni)Cov’(nj,nj)

()

Since we use both a Gaussian kerfigl(¢) and a Gaussian distribution of jitter times, in practice, we
calculatedy;(t; J) by convolving the measured spike traitit) with a normalized Gaussian kernel of std.
dev. T2 + J2, which is the asymptotic value of equation (6)Ms;; — oo. Note that the computation
of Cov'(n;,n;) simply amounts to the dot product of two time series obtaiinech the original spike
trains by convolution with ‘mexican-hat’ kernel given by iference of Gaussians of variancés and
T2+ J2.

The effect of correcting for slow co-modulations of the saté the computation of;;(7") can be
assessed by examining the cross-correlograms (CCGs)ieidndl pairs (Fig. S10). Calculating corre-
lations with respect to the mean rate across the recordieguivalent to comparing peaks or troughs in
the CCGs with the dashed gray line. Calculating correlation using the jittered surrogates is equiva-
lent to comparing the CCGs with the red solid line. In mosesdke difference between these two ways
of estimating correlations is small, but occasionally ih@ (some examples are marked by asterisks in
Fig. S10).

1.3.5 Assessing significance of correlations

For each population recording, we generatéd,; = 500 surrogate data sets. In each surrodale=
1,..., Nju), the spikes times of each of the recorded neurons wereejittby adding a independent
Gaussian random variable of zero mean and std. d&v. In this way, to the measured correlation
r;;(1T") of each pairij, we associatedV;;;; surrogate correlationsy;;,, (7'). Note that, by construction,
the average of;;,,(7") across the distribution of jittered surrogates is zero. #eutated a p-value for
ther;;(T") of the original spike trains as

p= (Npos + Nneg)/Njitt
where

Npes = number of 75, (T) > |ri;(T)]
Nueg = mnumber of 7y, (T) < —|ry;(T)] (8)
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In Fig. 4 of the main text, the;;(T") of a pair of spike trains was deemed significant ik.01. We
used the same method to assess the significance of the popwaeraged correlation(T) (Fig. 4E).

We also calculated the histogram of correlations for eactogate data set. The white lines in Fig.
4B,D of the main text is the average histogram across\thg = 500 surrogates. To give an estimate
of the variability in the correlation histogram acrossejittd surrogates, we found, for each value of
correlationr, the distribution of values across surrogates of the vafueach of the 500 histograms at
that value ofr. The gray bands in Fig. 4B,D enclose 95% of the mass of thahiitibn obtained for
each value of.

1.3.6 Cross-correlograms

The value of the raw cross-correlogram (CCG) between a p#die $rainsij was computed following

1 Eosi(t)si(t+7)
CCCHN = oL 27 o, 9
t= v

where the sum i runs over time at steps of sizi, L is the number of bingt in the period (ACT or
INACT) and the average rates are given by equation (4). With this normalization, if thekeptrains
were independent (on all time-scal&sy’G;;(7) would be equal to one at all lags(except for finite
sample fluctuations).

In the insets of Fig. 4B show the average cross-correlogradiss, (7) and CCG_(7) over all
positively and negatively correlated pairs witkq.01, computed as:

1 Mz
CCGi(r) = N S CCGy;(r), (10)
i

where the sums runs over thé, (/N_) positively (negatively) correlated pais with4 0.01. In this
figure we usedit = 5 ms.

In Fig. S10 we show individual functionSCG;;(7) (white) together with the meafC'G ;;,(7)
(red) obtained for each pairj by averaging ovetV;;; = 1000 jittered surrogate pair$ij}; (I =
1,..., Njiu) (see above).

1.3.7 Distance-dependence of correlations

We assessed the distance dependence of the maaah standard deviatiosm,. of the correlation during
periods of activation (Fig. S11). To do this, each pair oksyirains was assigned a distance equal to the
distance between the shanks where the two cells were retoRdgrs recorded in the same shank were
assigned a distance equal to zero. We then lumped all pahghe same distance and recomputedrthe
histograms for each of the 8 distances in each recordingpgess

We calculated by a simple linear regression how the pasicstatistic { or ¢,.) depended on the
distance between shanks across recording sessions. Intordeow whether the slopgig,., of the

10



regression was significantly different from zero we usedmaparametric shuffle test. For each statistic,
each point was given by a pair (distance-correlation),esponding, for instance, to the mean correlation
of all pairs recorded in the same shank in a given experim@fet.created 5000 surrogate data sets by
randomly shuffling the distance labels of each point, andutaied the slope of the regression for each
surrogate. The-value reported in the text is the fraction of the surrogatib a slope greater than the
absolute value offng,;, or smaller than minus the absolute valuef,;,, .

11



2 Analytical description of the recurrent network dynamics

Asynchronous states in recurrent networks have been dtadhialytically beforeZ, 31-38. However
previous treatments lacked at least one of two featureshndre crucial for an accurate description of
how recurrent circuits in the cortex operate: the netwotkdied so far were either sparsely connected
or weakly coupled. In order to make these concepts precisggdapt thdarge N limit, considering a
series of models of increasing size, in which connectiorbabdities and synaptic strengths scale in a
systematic manner with the si2é of the network (considering how dynamical properties ofrteawvork
change withN allows one to make qualitative statements which are rolmushanges in the precise
values of model parameters). A network is said to hdeeseconnectivity if the probability that two
cells are connected does not decrease with the networkisiagandom densely connected network with
connection probability, pairs of cells will therefore share a fractiprof their inputs on average, even in
the limit of very large networks. This should be contrastethe case ofparseconnectivity. We say a
network is sparsely connected if the average number ofyorapdic inputs to a neuron is independent of
the network size, i.e., if the probability of connectionlesaas~ O(1/N). Similarly, a network is said
to havestrongcoupling if the number of inputs needed to make the neurorisfisgesmall fraction of the
total number of inputs the cell receives; following),(we assume that this fraction approaches zero as
network size increases. Thus, the connection strengthohdecrease with the network size at a slower
rate tham~ O(1/N). For the current model, we assumed the synaptic coupliraje ss~ O(1/v/N).
With this scaling, the magnitude of temporal fluctuationghi@ synaptic input currents to the neurons in
an asynchronous network saturates to a value of the ordéedfiking threshold in the limit of large
networks B). Thus, in a densely connected, strongly coupled netwaltons share inputs and synaptic
currents display strong temporal fluctuations, even inithé bf very large networks.

Here, we present some aspects of the analysis that we dedelomlescribe asynchronous activity
in densely connected, strongly coupled recurrent netwdtks goal is to lay down formally the ingre-
dients necessary to understand the behavior of the popuiatieraged firing rates and correlations in
the stationary self-consistent asynchronous solution stk in section 2.1 by describing the architec-
ture of the network, and by reviewing the formalism we empthyintroduced in39). In section 2.2
we characterize the behavior of firing rates in the asynausrstate. This will later be used to show
that the asynchronous state displays tracking of fluctoatidn addition, it generalizes previous work
in sparse balanced network® (o the densely connected case. Our main theoretical risgulesented
in section 2.3, where we calculate the leading order of thmulation-averaged pair-wise correlations
in the asynchronous state. We show that the leading order(¥1/N), which justifies our claim that
the network is asynchronous. In the next sections we ifitessttwo important properties of the asyn-
chronous solution. First, in section 2.4 we show that thditegporder population averaged correlations
just described are equivalent to the tracking of the instaus external activity by the excitatory and
inhibitory populations, and that tracking becomes moreigte for largerV. The tracking phenomenon
is what ensures mechanistically that global fluctuatiomsrat amplified into large network-wide syn-
chrony. We finish this section sketching how to generalizeresults (a single network receiving inputs
from an external network of independent neurons) to thegaapon of activity between several asyn-
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chronous networks, thus establishing the full self-cdasisy of the solution. Second, in section 2.5 we
show that the asynchronous solution for the populatiomesyeel correlations is also equivalent to the
cancellation of the correlations between the different ponents of the synaptic currents. This is im-
portant because such cancellation can be directly tesfmtiexentally. An illustration of the experiment
is performed numerically in Fig. 3C-D of the main text.

2.1 Network Architecture and Dynamics

We consider a recurrent network composedoéxcitatory ) andN inhibitory (I) cells. The probabil-
ity that a neuron of population = FE, I receives input from a neuron of population= F, I is denoted
by pas. In addition to the cells in the recurrent network, we alsasider input from an externalX()
population of neurons, which do not receive inputs from #g®irrent network (see Fig. 2A main text).
In particular, we assume that there &feexcitatory cells in the external network and that the prditgb
of a connection from an external cell to a cell in populatioof the recurrent network ig,, x .

The strength of the synaptic connection from geit populations to cell: in populationa is denoted
ast]‘.ﬁ (Greek letters refer to populations and Latin letters ta#eneurons). We consider randomly
connected networks in which

Q jOl
P(Jijﬁ = \/—%) = Pap
PP =0) = 1-pas (11)

where the quantitieg, s are order unity (which we write as O(1)), meaning that they are independent
of the network size. Synaptic connections are thingng This network architecture is similar to the
one analyzed ing), with an important difference. In that network, the averagimber of pre-synaptic
inputs was held fixed independently of the network size, @aglin our network it is a fixed fractign

of the total number of neurons per populatidh Thus, in that network the fraction of shared input for
any pair of cells vanishes in the limit of large networks, vé#es in our network its average is a constant
Pag iIndependently of the network size.

We use the formalism introduced by Glaub86) This formalism has often been used in neu-
roscience applicationsl(40, including the study of correlations in recurrent netws(B2) and the
analysis of balanced recurrent networRk (n this framework, neurons are modeled as binary elements
We will denote the state at timeof neuron: from populationa ascof(¢) = {0,1}. All neurons update
their state independently and stochastically. We will derssw(c$*) the probability per unit time that
neuron: from populationa: changes its state from* to 1 — o, and by P(7,t) the probability that
the state of the whole network & = {o;} (: = 1,...,3N) at time¢. As described in39), one can
write an equation for the rate of changeffs, t) (the master equation) by noting that if neurons update
independently, in an infinitesimal interval of length at most one neuron can change its state. If follows

that
d N’ N’
EP(J’ t) = —P(d,t) Z w(o;) + Z P(Gen, t)yw(l — ;) (12)

%
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whereN’ = 3N andd') = {o1,...,1 —0y,...,0n}. The equation should be solved with the initial
condition {7, 0}. Using this equation, one can write up an equation for thepteai evolution of any
arbitrary product of neuronal variables. For instance,témeporal evolution of the average activity of
neuron: with respect taP (&) is given by

d

d ) d_ .
Sl = < <§: P(J,t)al-) - ZU: <EP(0,75)> o

Substituting equation (12) into the previous equation, @btains
d

a Z ZP 0'(0*), 1—0'J P(d,t) Zw 0'J }

Since we are summing over all configuratiahdor each term withr; = 1 there is a corresponding term
with all other neurons in the same state byt= 0 and vice-versa. Renaming the dummy indices in the
summation ovey is therefore equivalent to making the following replacetadar the positive terms in
the r.h.s of the last equation: whgn# i, P(Gwn), t)w(l — o5)0; = P(d,t)w(o;)o;, and whenj = i,
PG, t)w(l — ;)0 = P(0,t)w(o;)(1 — 0;). The terms withi # j cancel with their corresponding
negative terms and one is left with

£) =2 P 1) [w(o) (1 - 209)] (13)

Using similar arguments it is straightforward to find the eegsion for the joint probability that two
neurons are active at the same time

d

7 (gi0;)( ZP 7,t) [w(o;)(1 —204)0; + w(o;)(1 — 20;)0;] (14)

The dynamics of rates and correlations (of any order) isefoee completely determined by the
transition probabilitiesu(. . .). In our case they take the form

w(oy) = E[Uf‘—@(h?)]z (15)
w(oX) = %[1—(205 D(m — 1) (16)

where©(...) is the Heaviside step functiom;;" is an external parameter specifying the mean activity
level of celli from the external network, and* is the net afferent current to this cell, given by

EJIX N

= Y el - 17)
g J

For notational simplicity we have included the thresh@fdof each neuron as a constant negative term
in its input current. A neuron’s output does not contribwat@s input, so the summation in the definition
of h$ does not include the term proportionald§.
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According to equation (15), at the time of its update, thenesfa cell from the recurrent network
becomes active (inactive) if the afferent input from all @tmeurons, including the external ones is
greater (smaller) than its threshold. According to equafits), on the other hand, the state to which
external cells are updated to does not depend on the stdte oégt of the network. Because of this, it
will follow that for any given pair of external neuron&,(o;*; o) = P(0;*)P(c;*). Given the form of
the transition probabilities, the symbpl .), which stands for an average over the sources of stochgstici
in the dynamics, will stand for an average over the distidoubf update times of all neurons, and over
the probability that an external neuron will become acédatvhen its state is updated.

Let us define the average activity of célirom populationa at timet asmg(t) = (¢f)(¢). Using
the transition probabilities (equations (15-16)), equadi(13) for the temporal evolution of the average

activities become

raml(t) = —mE() + (©(h (1)
() = —m (1) + 8)

Similarly, we define the instantaneous correlation (djrispeaking this is the instantaneous covariance,
but we will use the term correlation throughout the desmipof our analytical results) at timebetween
unitsa; andg; as

ri(t) = (907 (8)d07 (1)) a; # Bj
wheredx = = — (x) anda, 3 = E, I, X. Substituting the transition probabilities in equatiohS-16)
into equations (13-14) one obtains the following equatifinshe temporal evolution of the pair-wise
correlations

ragr 0 =100 + el LA L CHONEEHOICLAON

=[O0 ()a] (1) — (O (hg (0)m] (1]
Ta Tg

Tax%r%X(t) — —r2X(t) + Ta:fTX [<@(h$(t))aj< (t)) — mg (t)ym; (t)]

wheret,g = (1473)/(7a + 73). We will be interested in the value of the firing rates and page
correlations in astationarysituation (which we will also refer to as equilibrium) whehe memory of
the initial conditions has been lost and the statisticapprties of the network activity are no longer
changing. This is equivalent to taking the- oo limit of the previous equations, which results in

mit = (O(h")) (19)
m¥X = m* (20)
(ra + 7)1 = 7a(00860(RY)) + (60(h)d0] )75 (21)
(Ta + )15~ = (00(h§)d07 )7x (22)

The reason the external-recurrent correlations only aomiae term is that neurons from the recurrent
network do not project to, and therefore have no influencdéhemnexternal neurons.
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The difficulty in evaluating this set of coupled non-lineajuations lies in the fact that arbitrary
dependencies between the activities of different neuroeslyde, in principle, a closed form for the
probability distribution of the synaptic current§'. Since theh{ are the sum of a large number of
stochastic variables, the central limit theorem ensurats ifithese variables were independent, the prob-
ability distribution of A& would be well approximated by a Gaussian distribution fegdanetworks.
However, the existence of shared inputs introduces coisatain the activities of the cells. The central
limit theorem can nevertheless still be used if these caticals are sufficiently weak. In fact, if the
population-averaged correlations are inversely propoali to the network siz&/ (and higher order cu-
mulants decay fast enough), the distributiorhfcan still be well approximated by a Gaussian for large
N (41). Network states in which the population averaged coiilatscale as- O(1/N) are called
asynchronoug32). In an asynchronous state, neurons effectivelyindependent (section 3.1), in the
sense that the correlations do not significantly impair hal the average firing rate in the network can
be estimated (Fig. S2).

Our strategy will therefore be to firstssumehat the network is asynchronous in the steady states.
With this assumption, we will develop equations (19-22) lbdain expressions for the population av-
eraged firing rates and pair-wise correlations, in the nekwé\fter this, we will show that there are
solutions to these equations in which the network is indesgde@hronous.

We will do this in two steps. First, we will develop the set guations (19-22) without using the
fact that the synaptic connectioﬂ;‘.}ﬁ are stochastic, but using the central limit theorem to ievak
Gaussian distribution for the synaptic currehfs This leads to a set of coupled equations for the firing
rates and pair-wise correlations of each neuron and nelupairain the network, which we refer to as
the microscopicequations. Second, we will average over the distributiothefsynaptic connectivity
in order to obtaimmacroscopiequations for th@opulation averagediring rates and correlations in the
network.

2.2 Firing Rates

We assume that the distribution of the afferent currghtio cell o; is well approximated by a Gaus-
sian. Let us denote the mean and variance of the the Gausstabulion of the current to celly; at
equilibrium by
pg = Jim (b () (s = Jim ((3h (1))%) (23)
In terms of these quantities, and following the notation48)( equation (19) for the equilibrium
firing rate of cella; becomes

wherey® = —u2/4/(s%)? and

mit = H (47) (24)

H(z) = \/%/:O dx exp(—z2/2)

Equation (24) gives the firing rate of every individual neuno the network in terms of the activity of
all other neurons and the properties of the connectivityndve would like to obtain atatisticaldescrip-
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tion of activity in the network, specifying, for instancégtaverage firing rate in a given sub-population
mae = Y, m$/N. In order to do this, one takes advantage of the fact that éteark connectivity

is stochastic. Because of this, population averages cahdugt of assampleaverages which, if the
network is large, will provide accurate estimates ofdisribution averages induced by the probabilistic
connectivity. Let us denote the probability distributioinacgiven connectivity matrix a®(.J). To com-
pute averages ove?(J), we note that both the mear and the variancés$)? of the current are linear
combinations of a large number of uncorrelated random blsa(the synaptic variablejéf;.ﬁ). Thus,
P(J) induces a probability distribution in® and(s¢)? which will be well approximated by a Gaussian
for large networks. We denote this by

/’L? = luOé + xﬂ(x A/’LOL
(s9)? = 2+ xsiAsi

(2

where thex’s are zero-mean, unit-variance Gaussian random variable$ where we have defined
(Aa)? = [(a — [a])?]. We use the notation ..] to denote averages over the distribution of hetero-
geneity P(J) (43). Although the variables,,, andz,. are in principle correlated, it can be shown that
the cell-to-cell variability in the magnitude of the temabfluctuations in synaptic curredts? decays
with the network size, whereas,, Au, ands? do not. Thus, for large networks, one only needs to
consider the following population averages

1
Ha = E Z Jaﬁmﬁ —0q (25)
(Apa)* = Z 594+ > Tas(as — mB)
g

s2 = Z 5mﬁ—q5 + Con

where we have made the following definitions:= 1/VN. Jug = [J3] = jagpas and Jéﬁ) =

(757 = [T271)?] = 52 spap(1—pagp). These are, respectively, the average and variance ofshiédtion
of synaptic efficacies between pre-synaptic neurons fropulation 5 and post-synaptic neurons from
populationa. Finally, g, = >°;(m¢)?/N is the second moment of the population distribution of firing
rates, andt,g = >_;; <5h§‘6hf )/N? is the average correlation between the synaptic curremsucons

in populationsn: and 3 (44). We show below that the population-averaged current tadioa decreases
with the network size¢,3 ~ O(e), so it can also be neglected in the previous equations inrtiiedf
large networks, i.e., as— 0. In terms of these quantities, the population-averageddfirate and the

second moment of the rate distribution can therefore bdafge networks, approximated by

patrApa 2%e%
/Dm H (— - ) =H (—7m> (26)

2
do = / Dz [H <—““”;““>] (27)
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where Dz is a Gaussian measure of zero-mean and unit-variance.
As was shown inZ), one does not actually have to solve equation (26) in thgelar limit in order

to obtain the leading order of the firing rates in the netwdBecause each neuron receivesO(N)
synaptic inputs, but only O(+/N) are enough to make it fire, the net magnitude of the total atiait
and inhibition felt by the neurons is very large compared#ofiring threshold (factot /¢ in the r.h.s. of
equation (25)) In order for the firing rates not to be at eidegD or at saturation, these large excitatory and
inhibitory drives have to cancel, but this cancellation caty happen if the firing rates take on precise
values. Thus, for large networks, imposing the canceliatietermines the rates. Although this has
already been shown i”2(42), we briefly now outline the formal derivation of this idea mmpleteness
and because an essentially identical rationale deterntiveeaverage correlations. In order for the net
synaptic input in equation (25) to be of order unity (to avoiinplete quiescence or saturation), it has to
be true that

Z Jopmp = Z Jagmp + Jaxmx ~ O(e)

8 B=E,I
Asymptotically, i.e., ag — 0, this is a linear equation that determines the firing rategjatlibrium

Z Jogmg = —Jaxmx
B=E,I
so that
me=— Y JogJaxmx = Aamx (28)
B=E,I

Thus, asymptotically, the population averaged firing rditeach population is proportional to the popu-
lation averaged rate of the external neurons.

The conditions for this solution to be realized have beemrrilesd in @2). We do not repeat the
analysis here, but just mention that the balanced solusioery robust (see also Fig. S4), i.e., it does not
require fine-tuned values for any of the network parametarsr(ection strengths, connection probabili-
ties and neuronal thresholds and time-constants).

2.3 Instantaneous Pair-wise correlations

In order to obtain an expression for the instantaneousvpag-correlations in equations (21-22) one
needs to evaluate terms of the ty(.@(h?)af ). Let us first rewrite them in terms of the conditional
probability that neuromny; is active given that neurog; is active at the same time. To do this, we note
that

©h)s)) = S P@ol6h) = 3 P@e)lo))Plo)) o)

= m! Y PGedo] = 1)O(he e + JY) =m0 eh + I3 ) el = 1)

=B
o'(o'].)

where(...|o; = 1) = 3, P(Gplo; = 1) is an average over the conditional distribution of the
network activitys given that neuror; is active, andv ;) means that neuros; is excluded from all
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those included i (and similarly forh;*-?)). The average over the conditional distribution is equeial
to an average over a Gaussian random variable

2o = hi'eh + Jgﬁ

with mean and variance given by

~

o= (Fenlo) =1
5 = (o)) =1) - (1)’

(O(hi)o]) = H(-75/\/ (5 (29)

We develop the previous expression in two steps. First, Wtseraverages over the conditional distribu-
tion to averages over the equilibrium distribution by ngtthat

(02107 =1) = (081 + 0] /m))
(ofollol =1) = (ofo](1+ 0] /mf))

Second, we relate propertieslq¥<af) to properties oh* by recalling that

so that

1
1

e
« 2 «a 015 b\2 afra B
(hi'ehH)” = (hi")? + (J3; ) — 2J;i hi'o;
which leads to
(ol =1) = (A1 +d0] /mf))
(22?0 =1) = ((h¢)*(1 + 60’ /m])))

Using these equations, one can express the conditionahrtems of the meap$ and variances$)?
of the current over the (unconditional) equilibrium distriion. This is done by noting that

((h$")2007]) = ((6h)?00%)) + 20 (0hG607))

Making the definitions
aff _ as B af _ a\2s B

one obtains
e =+ (AYml)
(32 = (s0)?+ (B yml)) — (AL Jm))?

Equation (29) therefore becomes

—p& — (A% )m?)
CIE =H( ai R )m@ (30)
' V(s2? + (BY fml)) = (a3 fml)y2 )
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If an asynchronous state exists in this network, the pojoulaverage of the quant|t|e$ /m and
(B by /mj) - (A%ﬁ/mj) , which quantify the difference between the conditional amdonditional
means and variances to neuraeprespectively, must be of order O(1/N) at most. Imposing these
conditions results in a series of equations that set theeyalot only of the population-averaged correla-
tions, but also of a number of other properties of the agtivitthe network such as the degree to which
cells with a higher firing rate tend to have a higher corretativith all other neurons in the network.
Here, however, we will only describe how to calculate theyaton- averaged correlations and firing
rates in the network, for which it is sufficient to keep tra¢keyms linear |nA /m (45). Developing

equation (30), thus, up to first orderﬂff/mj , One obtains

ay B\ _ o, B s o p0f afy2 af
(O(h; )Uj> =m; m; +m; Aij +O((Aij ) )+O(Bij )

= 0mg /Ops = OH (—pg'/\/ (s3)?) /Ot

is the slope of the input-output relationship of the neurealuated at the value that the mean current
takes in equilibrium. This allows us to write the followingpeession for the (microscopic) instantaneous
correlations at equilibrium

where

(Ta + 78)77; - m?Aaﬁfﬁ + mﬁAﬁa (31)
(Tao + 775 o _ i AN Tx (32)
where
Aaﬁ Jaﬁ 6 )+ Z ?Tgf (33)
'Yk?éﬁj

The quantityA?f measures the influence of pre-synaptic Gglbn the firing of post-synaptic cell;. The
first term inA%ﬁ contains the contribution of a direct connection from gelto cell ; to their pair-wise
correlation. This effect is also proportional to the tengbeariance of the pre-synaptic ceﬂf (1— mf ).
The second term contains the contributions of all thoses aellich project to the post-synaptic cell
and with which the pre-synaptic cell; is correlated.

We would now like to obtain expressions for the populativaraged correlations, 3 = ZU i /N2
(if o = B in the previous expression, the pre-factor should%éN — 1)]~!). As described above, we
will do this by averaging over the distribution of randomlgnnected network#(.J), again assuming
that dynamical properties and functions lﬁﬁ factorize underP(.J). Let us start with the external-
recurrent correlations in equation (32). Averaging akér) one gets

. 1 .
(Ta + TX)TaX = le Juxax + E Z Ja-yT»YX TX (34)
y=E,I

whereax = mx — gx and ]aﬁ = aJag, With 1hy = 0] = Omq/Ope. In the last section, we
saw that due to the strong connectivity, there was a misntstiieen the magnitude of the net input to
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the neurons and their activity unless there was a precisgetiation of net excitation and inhibition. A
similar situation takes place here. Even if we assume tleahétwork is indeed asynchronous, so that
all population averaged correlations scale@s~ O(e?), the I.h.s. of the previous equation~sO(?)
and the r.h.s is- O(e). Thus, the equation has no solution unless there is a preaisze|lation between
the different terms in the r.h.s. To reveal this explicitiye express, x as a Taylor series ia

TvX = Z T,YXG

substitute this expression in equation (34) and evaluaedation at each order érseparately. Doing
this shows that the first non-zero term in the serieéfj)g,, whose value is given by the solution of

Z joryr-(f))( + jaXaX =0 — 74,(5))( Z XCLX =A ~ax (35)
'\/:E,[ a= EI

The last equality follows from the fact that

;E:IJ;;JQX = ;E:IJ;;JQX =-A,

Thus, we have shown that
Tax = 62AaCLX + 0(63)

Using similar arguments, equation (31) can be written as

- 1 - -
(Ta + 78)Tap = € JagasTs + - > Jorrys+ Jaxrxs| T8+
Lv=FE,1

Ejﬁaaoﬂ'a + - Z jgfyﬁya—i-jgx?“xa Ta (36)
Lv=FE,1

Again, expanding the,s anda, in powers ofe and evaluating the previous equation at each order, the
term~ O(e) results in the following equation

Z Jgfﬂ” +J§XT() Ta =10
y=FE,I

aﬁaﬁ Tﬁ—i- Z Ja»ﬂ” —I-Jaxrg()ﬁ Tg—i—JgaCL Ta +
y=FE,I

Whereago) = m&o) — q&o) is the leading-order population-averaged temporal vadaof the activity of
cells in populationx. In the general case, the solution to the previous equaditimak the first three and
last three terms in the last equation (which are identicaleéfexchange the values afand ) are both
equal to zero, i. er(ﬁ) is the solution of

Z jﬁyT.(yQa) + jgx?“g?()l + jgaa((lo) =0
y=FE,I
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It is useful to define the correlation, 3 between the instantaneous activity of populatianand 3 at
equilibrium. Using the notation, s for the Kronecker deltay, s is given by

Vo = tlilrgo(Z(éU?(t)/N) Z(éa?(t)/N» = Top + €00500 (37)
v J
in terms of which the previous equation can be written as
Z JB'YU + Jﬁ T&L = 0 — Z JBXTXO[ A AaaX
y=E,I BT

The solution for the population-averaged instantaneouswpse correlations in the steady states in our
network is therefore

rex = € Agax + 0(63)
rix = €Arax +O(e) (38)
rep = (Abax —a)) + O(e)
rir = € (A%aX—ag))+O(e )
rp; = €ApAjax + O(e) (39)

2.4 Tracking of fluctuations in the asynchronous state

There is a simple way of expressing the leading order saidtiothe correlations in the network. Let us
consider the difference between the normalized instantanactivities of the excitatory and inhibitory
populationsm, (t) = >, 0%(t)/N and the instantaneous activity of the external populatoren by

ZO‘ /N——ZO‘ a=FE1T

We can measure the degree to which the activity in the recunetwork tracks the instantaneous activity
in the external population by calculating the variance\gfx (¢) at equilibrium,

AaX =

Aamx

<(AaX(t) - <AaX(t)>)2> = ! 2 ((aa + (N - 1)"'aa)/‘4§¢ +ax — 2N7’aX/Aa)

Nm3
Replacing expressions (38-39) into this formula one oktthat, to leading order, it vanishes. Similarly,
it is simple to show in the same way that the variancégf;(¢) also vanishes to leading order.

Thus, although the magnitude of the temporal fluctuationthefinstantaneous firing rate of each
population is~ O(e), the magnitude of the temporal fluctuations of the insteetasdifferencein firing
rates is~ 0(63/2). This implies that as the network gets larger, the instadas firing rate in the three
populations track each other more faithfully, and thatngsiptically, tracking igerfecti.e., asN — oo

mp(t) = Apmx(t) (40)
mr(t) = Armx(t) (41)
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This result captures the essential difference betweerptrse balanced networR,@d2 and the densely-
connected one. In the sparse balanced network, the retessiback results in linear propagation of
the average firing rate. In the dense network, not only theageefiring rate, but also the instantaneous
fluctuations in activity are faithfully propagated. In teenditions, referring to the average firing rate as
‘signal’ and to the fast temporal fluctuations as ‘noise’draes questionable, since both are propagated
with the same accuracy.

Although we have assumed throughout that neurons from tteerex population were independent,
this assumption can be relaxed. We assumed neurons iX thetwork were independent in order to
avoid having to define the correlation structure of the extenetworkad hoc Our results, however,
are still valid if the external neurons are not independagtiong as the external network is itself asyn-
chronous. Note that this does not qualitatively change tbpgsties of the external input. Simply the
existence of common input makes the average correlationdest the external component of the synap-
tic input~ O(1). Thus, as long as the population-averaged correlationd®etthe external neurons is
~ O(1/N), this will only lead to quantitative changes in the corrielatstructure of the input from the
external network. Hence, asynchronous activity self-istastly propagates within and across densely
connected, strongly coupled network®), Asymptotic expressions for how rates and correlationgpr
agate from one asynchronous network to another can be ddriva a straightforward extension of the
simple equations (40-41) to the case of two asynchronowsonies$, with network 2 receiving excitation
from network 1. In the largeV limit, it holds that

mp,(t) = Ap?mp ()
mlz(t) = A}_)Q mEl(t)

Equations for the transformation of rates and correlatars be readily obtained by equating the tem-
poral average, variance and covariance of the previougsgijons

2.5 Balance of current correlations

The leading order solution for the average pair-wise cati@hs in the network leads to a cancellation
between the different components of the average corraldétdween the currents to a pair of neurons.
To see this, one just needs to note that

g = (ohgonll) = ZAC” (i)
Thus, the average correlation between the synaptic csrterells in populations and s is equal to
1
CaB = Z JMCLVJ% + ) Z Ja)\r)\“/']};,@ (42)
Y € YA
Terms proportional ta., in the previous sum are the contribution of shared input ¢caterage current

correlation. The other terms measure the contribution oktations between pre-synaptic inputs to the
average current correlation. Given that the leading orfidreopopulation-averaged correlations in firing
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activity is ~ O(€?), the leading order of each term in the previous sum is of oudéy. However, it is
straightforward to check that if one substitutes the sotutn equations (38-39) into equation (42), the
positive and negative terms cancel out. Thus,

cap ~ O(€) (43)

Just as linear propagation of average firing rates in thesspagtwork is extended to linear propagation
of instantaneous firing rates in the dense network, the datioa of the mean excitatory and inhibitory
synaptic inputs in the sparse network is extended to a datioel of the positive components of the
population-averaged current correlation (arising froraret input and from network amplification of
correlations between excitatory cells and between integoms), and a negative term coming from net-
work amplification of the correlations that tracking indsidetween the excitatory and inhibitory cells.

The structure of the synaptic current correlations is veffer@nt in sparselyconnected networks
such asZ, 33. In these networks each component of the current coroelati equation (42), including
those arising from shared input, decrease with the netwiaekia an asynchronous state. Thus, in a
sparsely connected network the asynchronous state isafettire of the network architecture, whereas
in a densely connected network it is a purely dynamical phemmon.
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3 Supplementary Results

3.1 Impact of correlations on the instantaneous populatioractivity

In this section we discuss the relationship between thedged magnitude of spiking correlations across
a neural population and the magnitude of the temporal flticlos in its instantaneous activity. This
relationship has been used to clarify the conditions undechvspiking correlations have a significant
impact on the accuracy with which the instantaneous agtofithe population can be decodefR(47,
48). For completeness with the goal of our study, we illustthige point graphically on this section.

A

asynchronous (¥ = 0) synchronous (¥ = 0.1) asynchronous (7 ~ 1/N)

200 cells

1000 cells N=

N=

0.01

Normalized variance

1 100
Network size N
Fig. S2: Impact of the average correlation on the instantaneus population activity . (A) Spike rasters (top
three rows) and traces of the instantaneous populatiovitsicti(¢) (fourth row) for networks of increasing size
N (see colored labels by the rasters) and different coroglati independent cells, = 0 (left column), size-

independent correlations, = 0.1 (center) and correlations which decay in a way inverselyprtional to the
network size; = 5/N (right). Correlated spike trains were generated as in Fi¢settion 1.1.2). Population
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activity m(t) was obtained using a bift = 5 ms and normalized byt to yield units of spikes per secon(B)
Normalized temporal variance of the instantaneous agtivift) (equation 44) vs. network siz&. In both the
case withr = 0 (solid) andr ~ 1/N (dashed), the variance decreases$/as, whereas when = 0.1 (dotted) the
variance saturates t@gr. Symbols represent the examples shown in (A) using the saloeade.

Let us consider a network composed/@fcells with firing ratern and pair-wise correlation. Spike
rasters of the activity of examples of such a network are shimwFig. S2A for different network
sizes N (different rows) and different’s (different columns). The instantaneous populationvégti
m(t) = >, ni(t)/N, wheren;(t) is the firing rate of the-th cell in a time window(¢, ¢ + dt), is shown
for each network in Fig. S2A (bottom). The variance acrasgii” of the mean activity of the population
m(t), normalized by the varianceof the activity of each cell is given, fav > 1, by

% = % + 7 (44)
The magnitude of//v quantifies the error that a downstream structure (usinglsianyeraging) would
make in the estimation of the average activity of the pojaatn, or, more precisely, the decrease in
such error for a population of siz¥ relative to the error for a population of siZé = 1. Thus,V/v
measures the extent to which it is advantageous to combénactiivity of N neurons when pooling their
activity.

If neurons are independent & 0; Fig S2A, left column),V /v decays as- 1/N (Fig. S2B, solid),
the standard scaling of the (squared) error of the meaki ofdependent samples. Networks were the
error of m decreases in this way were definedaagnchronoug32). If neurons in the network have a
fixed size-independent correlation> 0 (Fig S2A, center column), the error in the mean saturates to
/7 (Fig S2B, dotted) 47, 49. The smallerr, the larger the size of the population at which the error
starts to saturate, but for any size-independerthe error will always saturate nevertheless. We refer
to networks with a size-independenaissynchronousNotice that the distinction between synchronous
and asynchronous networks defined this way is qualitativ@pposed to a situation where the degree
of synchrony is assessed by the numerical value. oflthough a network of independent neurons is
asynchronous, not all asynchronous networks need to beasedpf independent neurons. Equation
(44) shows that a network of correlated neurons can be asymobhs as long the average correlation
decreases with the network sizeras 1/N (Fig S2A, right column; B, dashed). Although correlations
are present in such networks, they do not qualitativelycatfee accuracy of the estimation «f.

Given that the sizeV of a physiological network is fixed, what does it mean thatpbpulation-
averaged correlation decreases~ad/N? In other words, is it possible to tell whether a netwofk
a given sizas synchronous or asynchronous? Because the numerica waiugenerated by an asyn-
chronous network is small enough, it is always advantagémasnsider more neurons in the network
to estimate the instantaneous population activity. Thausn asynchronous network, the variance of
the instantaneous activity of sub-popuations of dizelecreases as 1/K, whereas in a synchronous
network, it would start to saturate at a valuefof< N (32).
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3.2 The effect of shared inputs and correlated inputs canceglin recurrent networks

In this section we describe in more detail the way in which effect of shared input is cancelled by
the effect of correlations between inputs in the recurregitvork studied in Fig. 2 of the main text
(which we will refer to as RecN in this section). We start bpwing explicitly that the net contribution
of correlations in firing to the total current correlatieris negative, and that it cancels the positive
contribution toc due to shared input. To do this, we first isolate each of theetffexts.

To isolate effect of shared input, we considered a simulateelayer feedforward network. Neurons
in the first layer were independent and had firing rates equhbise of the RecN. By creating the synaptic
connections from the first layer to the read-out populatisingiexactly the same probabilistic rule as in
the RecN (equation (11)), the correlations between cuwsrentells in the read-out population are equal
to the correlations produced exclusively by shared inpuh@éRecN. As expected, the distribution of
these correlations is centeredpat 0.2, the average shared input fraction in the RecN (Fig. S3/Ag)blu

To isolate the effect of correlations in firing, we consideteo read-out populations. Each of them
received inputs exclusively from a different half of the Re@nd the synaptic connections to each
population were again created by using the rule in equalid)y é€xcept that the probability of connection
was doubledy’ = 2p. By construction, neurons in different read-out populaishare no inputs, but
the synaptic current to each of them is statistically id=itio the synaptic current to any cell in the
RecN. Thus, correlations between the synaptic currentslte af different read-out populations reflect
exclusively the effect of correlations in firing in the RecAlthough correlations in firing contribute
both positively and negatively te (with E-E and -1 correlations contributing positively, and-1
correlations contributing negatively; Fig. 1D, F of the m&xt) the pink histogram in Fig. S3A shows
that their net effect is negative, with mean slightly largjesin - p. As described in the main text, the
effects of shared input and of correlations in firing in th&eRe&ancel each other out (Fig. S3A, black),
and the accuracy of this cancellation increases with thevarktsize (Fig. 2C, black squares, Fig. 2E,
and section 2.5 above). After the cancellation, sharedtisfiliexplains some fraction of the variance
in the distribution of current correlations (Fig. S3B, loot; compare with the shared input only case,
top, for a simulation of the same length). The fraction ofaace explained by shared input is parameter
dependent, but it does not go to zero with the network size.

An interesting functional consequence of the cancellatietween the effects of shared input and
correlated input is that it renders the firing correlatignof a cell pair informative about the presence
of direct connections between the two neurons. The effedirett connections in our network is of
the same order as their magnitude,1v/N, which is small when compared separately to the net effect
of shared input or to the effect of firing correlations betweeputs, which are both independent of
the network size. However, since these two large effectsatathe resulting weak correlation; is
significantly affected by whether the neurons in the paircamnected or not. To show this, we plotted
ri; versus the fraction of shared inppy; (49) for E1 pairs in the RecN, using a different color for
unconnected pairs (gray), and pairs with only a direct atmiy (green) or inhibitory (red) connection.
We considered the firing correlation; instead of the current correlatias; for this analysis because it
reveals the effect of direct connections more explicitliislis because direct connections have a stronger
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effect on lagged than on instantaneous current correlatiBmce the-;; reflect the time integral of the
whole current cross-correlogram, they are sensitive tdeitpged correlations between synaptic currents.
The correlations in firing;; clearly depend on the existence and type of direct connebitween the
cells (Fig. S3C, vertical colored histograms. Note thatdtesa under this histograms has been normal-
ized; there are many more unconnected (gray) than connée@édnd green) pairs). Since whether a
pair is or not connected is independent from its shared ifrpstion, p;; explains a lower fraction of
variance ofr;; than ofc;;, as the former is also strongly dependent on direct cororextbetween the
two cells. Exactly how informative;; is about the three sources of correlation in the networlciiiva

of shared input, magnitude and temporal structure of firmgedations between pre-synaptic inputs and
direct connections between the neurons in the pair) is patexrdependent, but it is a robust property of
the network that all three effects have a significant impaat;peven asymptotically.
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3.3 Robustness of the asynchronous state in the binary netwo

Since the cancellation between the different sources dfip@snd negative current correlations in the
network is the result of dynamicmechanism, it is expected that the existence of the asynohsostate
should not depend in a sensitive way on the parameters whatacterize the network architecture. Wi-
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Fig. S4: Robustness of the Asynchronous state in the binaryatwork. (A) Population-averaged excitatory
activity mg, (B) average firing correlationg g, (C-D) average correlation between the excitatory currepts
(C) and between the total currents (D) oriiacells, plotted in color as the strength of the excitatoryrmmstions
Ag and the inhibitory time-constamt are varied. The excitatory time constant was= 1. At each point in the
plot, the two recurrent excitatory synaptic couplings area toAgj. g, With « = E| I, wherej, g are the values
used in Fig. 2 of the main text (see section 1.1.1). The ndtioFig. 2 corresponds to the poin; = 77 = 1
on these plots. Left colorbar scale applies to (A) and rightbar scale applies to (B-DJE) Average activity
mpg along ther; = Ag diagonal in (A).(F) Same as (E) but fofgz. Only properties of the activity of th&
population are shown but the behavior of thpopulation is qualitatively identical. Statistics refl¢loe average
over 10-20 networksN = 1024) simulated for 200,000%.
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thin a broad range, changes in the architecture lead tougtatgnts in the mean level of activity and the
structure of fluctuations in such a way that the network resmbalanced and asynchronous. In order for
the inhibitory feedback to be effective, however, a minimstnength and speed of inhibition relative to
excitation is needed. We explored the robustness of thecheymous state numerically by examining
the behavior of the network as the level of recurrent exoitaand the inhibitory time-constant were
increased. Recurrent excitation was increased by multiglhe two excitatory synaptic couplingsz,

a = FE, I by the same factoky. We also increased the time constant of inhibitigrrelative to that of
excitation which was fixed atgy = 1.

The asynchronous state is stable for a wide range of valugg @ndr;, but eventually becomes
unstable when either inhibition becomes too weak or too slompared to excitation (Fig. S4A-D). If
one restricts the analysis to cases whege= 77, the asynchronous state becomes unstable beyond a
critical value Ay = 77 ~ 1.5 (Fig. S4E-F). Beyond this point the inhibitory feedback &t efficient
enough and the network activity displays large amplitudgllasions.

3.4 Effect of time-varying external inputs on correlationsin the binary network

Our theoretical analysis was restricted to stationary itimmd, i.e., constant firing rates of neurons in
the X population. This situation however, is very restrictivdthdugh we have shown that the activated
state under urethane anesthesia is well described by edlsestationary spiking (Fig. 4 main text),
firing rates are generally expected to change in time, eiherto internal dynamics under anesthesia
or due to sensory stimuli, motor behavior or cognitive pssieg during wakefulness. We investigated
numerically whether an asynchronous network state sirntvldhat described in the main text, is also
possible under time-varying inputs. Since the trackingaofdom fluctuations by the network is very
fast, we expect that if the mean external input does not ahég quickly, tracking of fluctuations will
still take placeon topof the time-varing signal, resulting in an active decottietaof synaptic currents
even in these conditions.

We tested this hypothesis by modulating the firing rate ogettiernal inputs to the recurrent network.
We used a periodic (filtered white noise, period 1 s = 100 malrime-constants) stimulas™ (¢) (equa-
tion (18)) which repeated 1000 times (Fig. S5A shows 10 igpes). This time-varying input induced
global temporal modulations in the activity of the wholeweitk (Fig. S5A, C) of a significantly larger
magnitude that the random fluctuations present when the ismtationary (Fig. S5B). Because the
modulation was periodic, we could compute the instantamemerage activity of each neuron across
repetitions (Fig. S5C). As expected, disregarding theajlalotivity modulation and simply calculating
correlations with respect to the mean activity of each aalbss the whole simulation leads to a distri-
bution of firing correlations: biased towards positive values (Fig. S5D, red). Howevermifariations
in activity are measured with respect to the time-varyingrage activity of each neuron (Fig. S5C), the
positive bias in the correlation histogram is removed (H§D, orange), resulting in a distribution of
very similar to that obtained under stationary conditiofig( S5D, blue). This is consistent with our
finding that the positive bias in the distribution of cortelas during the inactivated state (Fig. 4D main
text) is removed when one restricts the analysis to actolityng Up-states (Fig. 4D-F).

30



C

z 20

2 >

S O 10

S

s 05

9] 0

>

©

[2]

>

o

(0]

c

I}

5

g o

= 0 0.5 1 -0.05 0 0.05 0.1
Time (s) Firing correlation r

Fig. S5: Asynchronous activity under non-stationary condiions. (A) Raster of 500 neurons (top, sorted by
rate) and instantaneous mean population activity (bott¥ns, 4096). The firing rate of the external population
was periodically modulated in time, causing global fludtuad in the instantaneous activity of the recurrent net-
work (period = 1 s, horizontal bar{B) Same as (A) for a stationary external input, as used in Fid.tBeomain
text. (C) Average instantaneous activity of a random subset of 20€omestin (A) across 1000 repetitions of the
time-varying signal. Thick white line is the mean of the ag® instantaneous activity across the 200 cély.
Histogram of firing correlations for the different stimulation conditions. Correlationsplayed in the blue and
red histograms represent covariations in the activity afsge neurons with respect to their average activity across
the whole simulation (1000 s) for networks driven by stagigrand time-varying inputs respectively. Conditioning
on the instantaneous average activity of each cell (caleslin (C)) removes the positive bias of the distribution of
correlations, revealing asynchronous activity under astationary situation (orange). Inset: coefficient of &ari
tion (CV =0, /7) of the three histograms. The histogram of correlationsiievooth under stationary conditions
and time-varing conditions as long as correlations are ition@l on the time-varying signal.

Thus, large global activity modulations are compatiblenvite mechanism for active decorrelation
of synaptic inputs described in the main text. This is nofvaalrresult. In fact, in this network, if the
external inputs change sufficiently fast, they interferthwlie tracking or random fluctuations, resulting
in a positive bias in the distribution of correlations evéieraconditioning on the average instantaneous
activity of the neurons (data not shown; but see Fig. S8).

31



3.5 Robustness of asynchronous activity in the spiking netwk

In section 3.3 we showed that asynchronous activity ocduabustly for a large range of parameters in
the binary network. We now show that the key characteristiesynchronous activity, namely weak total
current correlations when compared to the temporal cdivak of the individual current components
and a wide distribution of spiking correlations, are aldoust features of spiking networks of integrate-
and-fire neurons.

We start by providing a detailed characterization of thevagtof the spiking network shown in
Fig. 3 of the main text. Neurons in the network fire tonicallydarregularly, with the membrane
potential hovering below threshold and with large fluctoiasi occasionally driving spikes (Fig. S6A).
The distribution of spike count correlationss wide (. > 7) for all three cell pair types, but especially
for I1 pairs (Fig. S6B). Both the positive and the negative tailthefr distribution are not present in
the jittered data and are therefore generated by the netyartmics, rather than reflecting estimation
errors due to the finite length of the simulations. We ingzged the dependency of the meaand
width o, of the correlation histogram on the count wind@w(Fig. S6C-D). AsT goes to zero, all
spiking correlations trivially vanish50). Very short-time correlations are on average all posiéve
increase withl" up to a few ms, at which point they start decreasing, reachilogv asymptotic value at
T ~ 20 ms which does not change Ass increased further (Fig. S6C). Additionally, the widthtbé
correlation histogram for all three cell-pair types relatio the jittered surrogates, has a maximum as a
function of T" (Fig. S6D). Both of these results can be understood as felldWe spike count covariance
with count windowT is related to the area under the cross-correlogram (CC@)eotorresponding
spike trains in the interval—-7,T') (see e.g.%1)). For two finite, independent spike trains, the spike
count covariance would therefore reflect the integratiostatistical fluctuations, and so have zero mean
and a variance that grows wifi. For two correlated spike trains whose CCG has widih, the spike
count covariance whell < 7¢cq is related to the shape of the CCG. Adecomes much larger than
Tcoa, the value of the covariance does not change on average $6i@), but its estimation becomes
less accuarate as a larger fraction of the covariance refileeigration of ‘noise’ 28). Because in this
networkrcca ~ 20 ms (Fig. S6E), ag' > 20 ms,7 reaches a plateau (Fig. 6C) amdapproaches the
width of the histogram of jittered surrogates (Fig. S6D).

We next characterized in more detail the cancellation betwihe synaptic currrent correlations
shown in Fig. 3C-D of the main text. Fig. S6F shows the CCGwéet the different current compo-
nents. The instantaneous correlation of the total curient the peak of the CCG) is smaller than that
of the components. Although this effect is qualitativelijmar to the cancellation of the correlations of
the components of the membrane potential (Fig. 3C), thé ¢ataent is comparatively more correlated
than the membrane potential at rest (compare peaks of tkhk BI&Gs in Fig. 3C and Fig. S6F). In
order to understand the relationship between synapti@etiend membrane potential correlations, we
computed the correlation between the currents filteredgusisimple causal exponential filter of time
constantry (52). While the correlation between the filtered current congmis remains large for all
values ofry, the filtered total currents become less and less correteegincreases (Fig. S6G) due to
the fact that the area under the negative side lobes in the @@ total current is almost the same as
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Fig. S6: Asynchronous activity in a recurrent network of spking neurons. (A) Spike rastergrams of 500
neurons (sorted by rate) from the external (blue), exaiyafgreen) and inhibitory (red) populations (top), instan-
taneous activity of each population (middle, bin size 4 nmg) @xample voltage traces of two (first and second)
and two I (third and fourth) neurons (bottom)B) Histograms of the spike count correlation coefficientsf
the different types of cell pairs and the jittered spikertsajcount windowl” = 20 ms). Jittered surrogates were
constructed by adding a uniform random variable in [-0.5] 6.to each spike(C) Average spiking correlation

vs. count window?'. (D) Standard deviation,. of the data normalized by that of the jittered surrogategVvgE)
Average spike cross-correlograms of each pair type (froemdom subset of 1000 and 1000/ cells) computed
by subtracting one from equation (4Jz) Average current CCG for different current component p4®j.Average
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correlation coefficient of the filtered currents vs. the filieme constant (see text). All data comes from a single
network simulated for 5000 s. All parameters as in Fig. 3 efrtiain text (values given in section 1.1.2).

the area under the central peak, so that the total area isstltam 63). Thus, similarly to the binary
network (Fig. 2F steps andiii), the full cancelation of correlations in the spiking netlvseems to
occur in two steps: first, when the different components anesed together and second, when the total
current is integrated by the cell's membrane potential.

A External rate D Connection probability G Synaptic time constant
0.6
- g 04 — 2
@ © - 5
¢ 0 02 - [
o S = 15
A2 (&) - o
) = 0 -
3 5 o
& g g
5-0.2 5 _
O (§)
0.4 L
0 20 40 0 0.2 0.4 2 3 4 5
External rate v, Connection prob. p Synaptic time .
B - E H
— )
5 041", .
k& = — @ 10
® 0.2 —-—a Q &)
5 o O 05
S h"-\.\_*. o o
g O = £
o a a o
302 @ @
. 0.5
2 40 -20 0 20 -50 0 50
External rate v, Lag (ms) Lag (ms)
Cc 006 F 6x1o3 | 6x1o3
. a7 _ e
—e—Or e ¢ I~ I~
c o ¢ g 4 g
% 0.04 g 5 5
© s . . - g 2 g
s 0.02 C
o [ (&) o
o o 0 o
Z Z
Of meses—=—g—s——8 2
0 20 40 0 0.2 0.4 10° 10" 102

External rate Vy Connection prob. p Count window T (ms)

Fig. S7: Robustness of asynchronous activity in spiking netorks. Left column: Effect of changing the
external rate/xy on (A) the mean rate of the networ{B) the averaged correlation of the current components, and
(C) the mearr and std. devo,. of the spike count correlationdliddle column: Effect of changing the probability

of connectionp in the network on(D) the correlation of the current components (white squarpeesent the
correlation of the filtered currents; = 20 ms),(E) the population-averaged spiking CCGsF pairs (computed

as in Fig. S6E), with lighter color corresponding to lowernd(F) 7. Right column: Effect of decreasing the
excitatory synaptic decay time constant (both recurrent and external{G, H) Same as (D, E)I) Averaged
correlationi betweenE' E pairs as a function of the spike count window. In (H, 1) light®elors correspond to
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longerrg’s. All data are averages over 5-10 networks simulated fOr2All fixed parameters as in Fig. 3 except
for vx = 8 spks/s (middle column). Count winddiv= 20 msin (C, F).

The effect of changing several network parameters on thavi@hof the network just described
is shown in Fig. S7. Increasing the external drive to the ondtwFig. S7, left column) increases
the firing rate of the recurrent neurons in an approximatelgar fashion (Fig. S7A), as is typical in
balanced network2(54). Overall, population-averaged synaptic currents beclesecorrelated as the
firing rates increase (Fig. S7B). Higher firing rates lead tdew distribution of spiking correlations
with average correlations qualitatively unaffected (F3g.C; see also Fig. S8D). Next we examined the
effect of changing the probability of connectipnFig. S7, middle column). The correlation between
the current components and between the total currentsit(afloee slowly) grows withp (Fig. S7D).
However, the negative side-lobes of the total current CG®vgn parallel (Fig. S7E), in such a way that
the instantaneous correlation of the filtered total sycapirrent (filter time-constant; = 20 ms) (Fig.
S7D, white squares) and the population-averaged spike couelationr (Fig. S7F) do not change with
p. This is further evidence thatis set dynamically and is not determined by the level of shamput
in the network. Finally, we shortened the synaptic decag taonstant-p of the excitatory synapses
(Fig. S7, right column). As expected, when excitation beesmrogressively faster than inhibition
(in Fig. S7G-l,71 =5 ms) the negative feedback is not fast enough and the netwsmomes more
synchronized. Instantaneous current correlations, dietuthe correlations between the total synaptic
currents, increase (Fig S7G). Average spike train CCGs gliese in magnitude and acquire a more
oscillatory character (Fig. S7H). Nevertheless, thiséase in oscillatory synchrony is gradual (no sharp
transitions in the qualitative behavior of the network welbserved) and has a relatively mild impact on
the population-averaged spike count correlations (Fid). S7

3.6 Effect of time-varying external inputs on correlationsin the spiking network

In this section we study the behavior of correlations undgr-stationary conditions in the network of
conductance-based integrate and fire neurons. We inviestigiais issue by having the instantaneous
firing rate of the external neurons oscillate sinusoidallyx (t) = 15 + 10sin(27 ft) spks/s), and by
measuring how correlations in the network depended on gwriéncy of the oscillatiorf.

As expected in a balanced netwogg,(the mean rate of th& and populations follows accurately
the temporal modulation of the external input (Fig. S889)( Spike train CCGs were corrected for the
modulation of the mean rate using a shift predictor: we oletithe CCG for each pair of spike trains
following equation (9) and then subtracted a CCG obtain@uyutie same formula but shifting the two
trains by a random integer number of oscillation perid&8.(The peak of the population-averaged CCG
betweenE FE pairs remained constant fgr < 10 Hz and then it increased by a factor~of3 between
10 and 100 Hz (Fig. S8B). Spike count correlations increasecespondingly, especially for very short
count windows, although overall they remained very smalbearage (Fig. S8C). Thus, although as
expected tracking becomes less effective when the exterpals change rapidly, this does not have a
strong impact om. This does not mean, however, that the correlation streaifithe network is unaffec-
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Fig. S8: Asynchronous activity in the spiking network in thepresence of sinusoidal time-varying inputsThe
external rate was varied sinusoidally over a range of fraqigsf from 1 to 100 Hz.(A) Instantaneous average
firing rates of thely and populations as a function of time for a stimulus wijtks 12.5 Hz £5). (B) Population-
averaged shift corrected CCG B1IF pairs (see text). The CCG peak increases Vitl{C) Population-averaged
spike count correlation for EE pairs as a function of for different spike count windows(D) Instantaneous
mean7(t) and std. devo,.(t) of EF pairs as a function of timef(= 12.5 Hz, count windovl” = 20 ms). The
width o,.(¢) follows the mean firing rate (see also Fig. S7C). Dashed Bpeasents the correlation std. dev. for
the shuffled data (see text). Data shown are averages ogenfs2@0F and 200/ neurons chosen from each of
four networks simulated for 1000 s. All parameters as in Big.

ted by the input. To show this, we computed the populatierayed instantaneous spike count corre-
lation 7(¢) and the instantaneous std. dey(t) as a function of time during an oscillation period using
sliding count windows ofl" = 20 ms (Fig. S8D, sliding step 5 ms). We also compute@) for the
shuffled data set obtained by shifting the spike trains asritesl above. The std. dew..(¢) from the
data was larger than that of the shuffled data, and was meduiiattime, to a much larger extent than
7(t) (at the scale of the plof;(¢) appears constant). Thus, correlations increase trahsiamhagnitude
during epochs of high rate, but positive and negative catigs increase similarly with rate, resulting
in a very weak modulation af(¢). This qualitative behavior was observed for the whole raofglee-
quencies studied. The small valuesr¢f) obtained are not a consequence of the method employed to
measure spiking correlations. Feed-forward networks wgirate-and-fire cells firing at similar rates
can exhibit correlation coefficientsin the range 0.1-0.2 (see, e.g., Fig. 1E) which can be largety
quickly modulated by time-varying input&€). We therefore conclude that asynchronous activity is a
robust feature of the spiking network even in the presendeng-varying inputs.
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3.7 Time-scale dependence of correlations in the rat cortex vivo

To verify that our conclusions regarding the distributiamfscorrelations from then vivo population
recordings were not dependent on any specific counting wiriélp we repeated the analyses using
different values ofl". Correlation coefficients were calculated as describecetii@n 1.3.4, keeping the
jitter interval J fixed to four times the counting window, i.el,= 47"

0.15 i
—O—r
c —o— O,
Q
S 0.1
o
o]
(&)
(®)]
£
X
Z 0.05
N
0 M

0.01 0.03 0.1 03
Count window T (s)

Fig. S9: Distribution of correlations at different time-scales Empty and filled dots correspond to the average
(plus minus standard deviation) across recording sessibiise mean correlation and correlation histogram
width o,. respectively. The histogram is wide across a large rangewfting windows. Notice the logarithmic
scale in the x-axis.

Fig. S9 shows the average across experiments of the mg@anpty circles) and std. dew.. (filled
circles) of distributions of correlations with time-scdleduring the ACT state, foF’ ranging from 10 ms
to 500 ms. Considering correlations at different time-sgdl, does not lead to qualitative differences
with the results presented in Fig. 4 of the main text (in whick- 50 ms): first, the mean correlation
was very small (less than 0.02) for all counting windows uf'te 500 ms, although it shows a slight
increasing tendency. Second, the coefficient of variatfichedistribution is also large for all windows
on this range, showing that the distribution of correlagida@ing wide is not crucially dependent on the
time-scale at which correlations are measured.

As expected, the width of the histogram goes to zero witheesingl’, since spike count correlations
become linear in the counting window &s— 0 (50). At the other extreme, correlations tend to become
more positive on time-scales of the order of seconds. Homveueh slow covariations in activity are
expected to reflect processes other than synaptic trariemissd integration (which are in general one
to two orders of magnitude faster).
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3.8 Examples of CCGs of individual cell pairs in the rat cortec in vivo

To investigate the temporal structure of pairwise corretet on fine time-scales we computed individual
cross-correlograms (CCGs, equation 9) from the experintlestrated in Fig. 4A-B of the main text,
during the ACT period (Fig. S10).

-0.2 -0.1 0 0.1 0.2
Spiking correlation r

EEEFEF
FEEBE

Al

01 0 01 04 0 01 01 0 01 01 0 04 01 0 04 01 0 04 -0. . -0. . 04 0 01
Lag (s) Lag (s) Lag (s) Lag (s) Lag (s) Lag (s) Lag (s) Lag (s) Lag (s)

Fig. S10: Examples of individual CCGs One hundred raw CCGs (equation 9, bin size 10 ms) from the
experiment shown in Fig. 4A-B of the main text. CCGs wheresemoto span the whole range of correlations
observed for this experiment. Top, distribution of cortielas r for this experiment (identical to the one in Fig.
4B; count windowI' = 50 ms). The color scale for is shown horizontally. Bottom, array of individual CCGs
arranged according to thevalue of each pair, which is also shown as the background ¢ste color bar on top).
The gray dashed lines mark the value 1 which signals no etivalwhen the trains are stationary. The red lines
shows the average CCG across 1000 jittered surrogatesifjiterval./= 200 ms). Only pairs with geometric mean
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firing rate/7;v; > 1 spikes/s were considered. The y-axis of each plot goes fevmtp the maximum between
two and 1.1 times the CCG peak value. Asterisks show somepramwith clear differences between the average
of the jittered CCGs and one, i.e., pairs significantly datesl on slow time-scales.

Fig. S10 shows cross-correlograms for 100 pairs, with tatioe coefficients equally spaced in
the intervalr = (—0.18,0.2), which almost spanned the whole range of values obtained in this
experiment; specifically, we divided this interval in onentted equi-spaced correlation values, and
selected the pair with the closesto each of those values. In order to avoid extremely spars8s;@e
only chose pairg; in which the geometric mean of the firing ratgsy;v;, was larger than 1 spike/s. We
compared each raw CCG (white) with a baseline value of one, expected if the two spike trains were
stationary and independent (dashed gray lines)(@naith the baseline value expected if the two trains
were only independent on time-scakes200 ms (red lines, obtained as the average CCG across jittered
surrogates for each pair of spike trains; see sections &r8i41.3.6 for details). Because the method
we used to compute corrects for correlations produced by slow co-moduatidith® rates, the figure
shows that the sorting of pairs bynatches the comparison of each CCG with the baseline olit&iom
the jittered surrogate trains (asterisks show a few exasnplere the two baselines are clearly different,
i.e., pairs correlated on slow time-scales).

As expected, pairs with positiveshowed clear peaks in their CCGs and pairs with negatsrewed
clear troughs. Pairs with ~ 0 showed mostly flat CCGs although a few showed a combinatiemeat|
peaks and troughs. Note that the CCGs of the pairs with the neggmtiver values have a symmetric
trough around zero. Symmetric CCGs have been usually ietiegh as being the result of anatomically
shared inputg7-59. However, both excitatory and inhibitory shared input ceay inducepositive
correlations (Fig. 1A of the main text), i.e., CCG peaks. §,hall of the symmetric troughs and many
of the symmetric peaks are likely to be caused by specific awatibns of positively and negatively
correlated inputs, rather than anatomically shared inputs

3.9 Distance dependence of correlations in the rat corteix vivo

In order to investigate whether the distance between twis gela pair has some influence over the
measured value of their spiking correlation, we recomputadelation histograms with pairs recorded
a given number of shanks away from each other (see sectiof) fi®ing periods of cortical activation.
Since our silicon electrodes consist of 8 linearly arrangjeghks separated by 2@on each, the whole
electrode array spans a considerable distance acrossrte& ¢b.4 mm; all penetrations were normal
to the cortex, i.e. shanks were perpendicular to the cotagars). As shown in Fig. S11, only,,
but not7, decreased with the distance, (slope= - 0.017/mm, p< 0.001;+ slope= - 0.002/mm, p

= 0.35, p-values with respect to a null hypothesis of no distadependence, see Section 1.3.7). Thus,
distant pairs tended to be more weakly correlated (for botreation signs), but there were still similar
numbers of positively and negatively correlated pairs ladiatances. The distribution of correlations is
wider (relative to its mean) for neurons recorded in the ssinask.
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Fig. S11: Distance dependence of correlationdviean correlatiorr (empty circles) and correlation histogram
width o, (filled circles), as a function of the distance between thenkk where each of the neurons in the pair
were recorded (the two curves show the average and std. dmssarecording sessions). Zero distance means
both neurons were recorded in the same shank. The meanatmme! does not depend on the distance, but the
correlation widtho,. does (see text).
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